There are more jobs in Artificial Intelligence than ever before

It’s probably not a stretch to say we are facing a looming job crisis — one that only has the potential to become worse as in the next decade, as automation becomes the biggest disruptor of jobs in traditional industries.

But with disruption comes opportunity. According to the job search website Indeed.com, there has been a 500 percent increase in the number of job postings in the field of artificial intelligence from June 2015 to June 2017.

While the absolute numbers might not be large (34 to 202 jobs in Canada), the growth trajectory is significant. Considering the potential for the widespread use of AI across many industries, there is a strong possibility that this field will be a substantial contributor to economic growth for the next little while, says Daniel Culbertson, an economist with Indeed.com.

Data from Indeed.com also found that Toronto has emerged as a hub for AI jobs, with 37 percent of all AI opportunities concentrated in Canada’s biggest city.

The most likely explanation for this is Geoffrey Hinton — computer scientist extraordinaire, and creator of a strain of artificial intelligence called neural networks which basically sets up computer systems to mimic the human brain. Hinton is based at the University of Toronto’s Engineering Department, where he is the director of a new AI lab, one that has seized the attention of global venture capitalists.

So what exactly do you have to major in to be able to gain access to to an industry with possibly the biggest job growth potential? Computer science, with a focus on machine learning engineering, for starters. It’s basically a more complex version of software engineering — you build algorithms and make sure they work reliably and quickly on a piece of software.

According to Indeed.com, 61 percent of the job postings in the AI industry were for machine learning engineers. 10 percent were for data scientists and only 3 percent were for software developers.

Interest in AI-related jobs has also grown exponentially in the last two years, which is a positive sign considering the growing skills gap problem in the Canadian labour force (too many graduates in fields with too few jobs). Searches for AI and machine learning jobs have apparently soared by 293 percent since June 2015.

And what’s even more interesting is the kind of companies that are hiring machine learning experts. You don’t have to work at a startup to be part of the AI revolution; banks and insurance companies are increasingly piling up on machine learning talent, fearing an impending existential crisis in their current business models.

A simple search on LinkedIn, fast-becoming the go-to online centre for job postings, yielded 679 jobs in Canada in machine learning. The top two job postings were BMO Financial Group recruiting a machine learning specialist, and accounting firm Ernst & Young for a research scientist in machine learning.

Advertisements

Annoying yet sorta fun virus makes you watch ‘Homestar Runner’

Remember the old days of viruses — which instead of holding your computer to ransom unless you pay hundreds of dollars like they do now — would just mildly annoy you with random changes.

As you’ll see in the case of Email-Worm.Win32.Lacon, which has been detailed in a video by YouTuber danoct1.

On the 10th of every month, the virus sets your Internet Explorer homepage to the 404 webpage of the much-loved Homestar Runner and also forces a log off when you try and close a dialog box titled “Your Angry Computer.”

The virus affects Windows computers and spreads via an executable attached to an email about a “National Call Registry” program. But unlike today’s viruses, this one is just simply mildly annoying.

“It’s not at all damaging, does not go after your files. All it does is kind of mess with you on the 10th of every month. So if all worms were like this, the world might be a pretty alright place,” explains danoct1. Wouldn’t it be indeed.

Scientists discover brain’s neural switch for becoming an alpha male

Brash, brawny and keen to impose their will on anyone who enters their sphere of existence: the alpha male in action is unmistakable.

Now scientists claim to have pinpointed the biological root of domineering behaviour. New research has located a brain circuit that, when activated in mice, transformed timid individuals into bold alpha mice that almost always prevailed in aggressive social encounters.

In some cases, the social ranking of the subordinate mice soared after the scientists’ intervention, hinting that it might be possible to acquire “alphaness” simply by adopting the appropriate mental attitude. Or as Donald Trump might put it: “My whole life is about winning. I almost never lose.”

Prof Hailan Hu, a neuroscientist at Zhejiang University in Hangzhou, China, who led the work said: “We stimulate this brain region and we can make lower ranked mice move up the social ladder.”

The brain region, called the dorsal medial prefrontal cortex (dmPFC), was already known to light up during social interactions involving decisions about whether to be assertive or submissive with others. But brain imaging alone could not determine whether the circuit was ultimately controlling how people behave.

The latest findings answer the question, showing that when the circuit was artificially switched on, low-ranking mice were immediately emboldened. “It’s not aggressiveness per se,” Hu said. “It increases their perseverance, motivational drive, grit.”

Mice generally organise themselves in stable social hierarchies that minimise conflict between cage mates. So the scientists pitched animals of different rank against each other in a range of tests to assess dominance.

In one, pairs of mice engaged in a head-to-head contest to shove their opponent backwards out of a narrow tube. In the video, one subordinate mouse is seen putting up only light resistance, but when the “alpha” circuit is stimulated for 10 seconds it adopts a rugby-style drive, propelling its opponent along the tube. With brain stimulation, low ranking mice won 90% of the time against animals they would normally have lost to.

“When we took mice that used to lose in the tube test they could win within just several seconds of stimulation,” said Hu.

Intriguingly, the experience of winning appeared to leave an imprint on the mice, making them more assertive, even when their brains’ were no longer being artificially controlled. They were found to be more combative in a second scenario in which they competed to occupy the warm corner in a cage with an ice-cold floor.

“We observed that not all the mice returned to their original rank,” said Hu. “Some mice [did], but some of them had this newly dominant position.”

The scientists described this as the “winner effect”, hinting that there may be a grain of truth in the self-help mantra “fake it ‘til you make it”.

The authors note that similar circuitry exists in the human brain, and although our own social hierarchies are less rigid they argue that similar mechanisms may be at play. The findings, they suggest, could have applications in understanding a variety of psychiatric conditions where people exhibit overly dominant behaviours, or lack motivation to compete socially.

Ivan de Araujo, a psychiatry researcher at the Yale University School of Medicine, agreed that the findings could be relevant in people.

“Social behaviours in rodents arguably operate under very different conditions when compared to human social behaviours,” he said. “However, history of winning is one characteristic of social dominance that is relevant for almost every social species studied, from insects to primates. Because each brain region investigated has its direct primate homologue, the present study opens new opportunities for understanding the involvement of brain regions linked to planning and decision-making in establishing social hierarchies.”

If the “winner effect” translates to humans, it would suggest that experience of success in one area of life could help build confidence in another. “And you can imagine for athletes before a really serious game they could maybe play a video game to have the winner experience to build up confidence,” said Hu.

The study, published in the journal Science, used a technique called optogenetics, to pinpoint and ultimately take control of the neuronal circuits involved in socially dominant behaviour. The mice were genetically engineered so that the target group of neurons were light-sensitive, meaning that the scientists could switch the circuit on and off at will by shining a laser into the mouse brain.

In the past few years, optogenetics has provided a window into the brain circuitry involved in a wide range of behaviours, from romantic attachment to the killer instinct of predators.

HOW TO RAISE BRILLIANT CHILDREN, ACCORDING TO SCIENCE

Parents receive a lot of mixed messages surrounding how best to bring up their children.

How strict should you be? Should you be more of a friend or guardian? How much independence should they be given?

And current parenting culture may not actually be setting kids up in the best way, according to two professors.

“We’re training kids to do what computers do, which is spit back facts. And computers are always going to be better than human beings at that,” says Kathy Hirsh-Pasek, developmental psychologist, professor at Temple University and co-author of Becoming Brilliant: What Science Tells Us About Raising Successful Children.

“But what they’re not going to be better at is being social, navigating relationships, being citizens in a community. So we need to change the whole definition of what success in school, and out of school, means.”

Hirsh-Pasek and her co-author Roberta Golinkoff from the University of Delaware believe children should be assessed in the six Cs: collaboration, communication, content, critical thinking, creative innovation and confidence. And they go in that order too.

Collaboration is crucial in the classroom and at home, and teaches children to get on with others.
Communication includes speaking, reading, writing and listening.
Content comes next because, as Hirsh-Pasek explained to NPR, “you can’t learn anything if you haven’t learned how to understand language, or to read.” Figuring out which content to select from a mass is a skill.
Critical thinking is then what you do with that content.
Creative innovation is the next step because: “You need to know something well enough to make something new,” Hirsh-Pasek explains.
Confidence is crucial in teaching children to take safe risks.

And it’s the roles of parents to encourage children in these six areas: “So, if you’re going to have a kid who engages in critical thinking, you’re not going to shut them down when they ask a question,” Golinkoff says.

“You’re not going to settle for ‘because.’ You’re going to encourage them to ask more. And you want them to understand how other people think.”

There are then levels to each of the six Cs, which reflect how strong you are in each skill, and Golinkoff and Hirsh-Pasek say parents can use the system to evaluate their own relationship with their children too.

The authors believe it’s crucial that parents supplement what children learn in school and they stress that social interaction – rather than gadgets – are crucial.

“What we do with little kids today will matter in 20 years,” says Hirsh-Pasek. “If you don’t get it right, you will have an unlivable environment. That’s the crisis I see.”

Creators Update installed on just over 35 percent of Windows 10 PCs, AdDuplex says

AdDuplex has pushed out its latest monthly report, giving us a snapshot of certain aspects the Windows ecosystem for the month of June. With this month’s report comes news that the Windows 10 Creators Update is now installed on 35.7 percent of all Windows 10 PCs. That’s up from an even 18 percent coverage as of AdDuplex’s last report in May.

The surge in Creators Update coverage has taken a chunk out of the Anniversary Update’s install base, but the latter still dominates for now with a 58.3 percent share of all Windows 10 PCs. That is down from the Anniversary Update’s 75 percent coverage in May, however.

On the Mobile side of things, the Creators Update takes the top spot, sporting an install base of 58.9 percent of Windows 10 Mobile devices. The Anniversary Update comes in at a 31.9 percent share, while Windows 10 Mobile version 1511 is installed on 4.6 percent of devices. AdDuplex also pegs Windows 10 Mobile devices running Insider builds at 4.6 percent.

Also included as part of the report is a very early look at how the Surface Pro and Surface Laptop are faring. So far, according to AdDuplex’s numbers, the Surface Laptop makes up a 0.4 percent share of Surface Devices, while the new Surface Pro comes in at a slightly larger 2.2 percent share. Keep in mind that we’re only 2 weeks out from the launch of both devices, so it’s way too early to come to any conclusions from the data.

Again, the numbers are interesting to look at, but there’s nothing too surprising about the pace of the Creators Update’s spread yet. So far, as AdDuplex notes, the Creators Update is tracking at around the same pace as the Anniversary Update before it.

As always, it’s worth noting that AdDuplex’s numbers are based on data collected from a sample of 5,000 Windows Store apps that use the AdDuplex SDK. Actual figures likely differ, but AdDuplex’s reports can be useful for tracking general trends from month to month. This month’s number were collected throughout the day on June 26.

How to Build the Perfect Sandcastle–According to Science

The following essay is reprinted with permission from The Conversation, an online publication covering the latest research.The Conversation

Whether we prefer water sports or relaxing with a good book, the humble sandcastle is often a seaside must. But what’s the secret to building a majestic sandcastle that will withstand the tide of time? Luckily, there’s a scientific formula for that.

It all started back in 2004, when a holiday company asked us to investigate the question. As a sedimentologist, someone who studies fragments of rock, I began pondering what kind of beach would work best for castle building. To find out, I compared the sand from the ten most popular beaches in the UK at the time. Though in truth any sandy beach will do, Torquay came out top with its delightful red sand, closely followed by Bridlington, with Bournemouth, Great Yarmouth and Tenby tied in third. At the bottom of the league was Rhyl.
Having selected a beach one has to find the perfect spot. Now this is a question of taste rather than hard rules. Some might prefer a spot close to the car park with easy access when the rain arrives while others might want to stay next to a cafe. Others yet might hanker after the secluded fringes of the beach, perhaps sheltered by natural promontories of rock that keep the biting wind at bay.

Now a castle should be a symbol of military strength, but to stand proud one needs strong sand. The strength of sand depends on the properties of its individual grains and on the water between them. The more angular the grains, the better they will lock together. The more a grain is transported the more rounded it becomes. Microscopic shell fragments work well in this regard. The finer the grains the more they hold the water. And water matters.

Too much water and your sand will flow, too little and it will crumble. You need to get it just right and your castle will stand proud and last. It’s all down to the surface tension of water – the thing that gives the “meniscus”, or skin, to a glass of water and holds down that glass when placed on a wet bar top. The film of water between individual sand grains is what gives sand its strength, too much and it lubricates one grain over the other, but just right and it binds them strong.

Now the experimentation we did suggested that the perfect sandcastle requires one bucket of water to eight buckets of dry sand. Or if you want the magic formula: Water = 0.125 x Sand. So assuming that you don’t have any science gear with you, then you are looking for a spot close to the high tide line – usually marked by a line of seaweed and flotsam – and the low tide line where sand is still visibly wet and the waves are close. But remember that this will change as the tide comes and goes during the day.

My next tip refers to quality of your tools. In my experience there is a direct correlation between the age of the builder, spade size and the speed at which boredom sets in. Adult helpers find the smallest spade nothing but frustrating, and while young assistants might aspire to use the biggest spade, it is often too big to handle. A selection of tools will keep the workforce in harmony. The bucket also has to be the perfect size and shape. The best buckets are the simple round ones – not the ones with the fancy turrets which when turned out produce a castle in itself. A round bucket will allow you turn out countless towers and architectural features. A single bucket can be turned out several times to create a large mound from which you carve an amazing tower.

As you build, spare a thought to the story, not just of the castle one is building with its tales of derring-do, but also the story of the sand itself. Each grain is a fragment of rock and contains a story of relict mountains, ancient rivers, dinosaur-infested swamps and seas, of past climates and events which tell the amazing story of our planet. The red sand of Torquay once blew in giant sandstorms, as the area was once part of a desert far greater than that of the Sahara. The sand at Bridlington or Great Yarmouth tells a tale of giant ice sheets and drowned lands below the North Sea.

My next tip refers to size. Yes, size matters – at least in the game of sandcastles. The modest castle with perfect towers, battlements and moat is ok, but it is the huge castles which break the beach horizon that inspire awe and wonderment in people that pass by. Think big! Pebbles, shells, driftwood fragments and feathers all enhance a castle. And let’s face it: a castle is about being seen. And although there may be science behind the humble sandcastle, don’t forget to have fun building it.

The Challenge of Fighting Mistrust in Science

“The denial of science—I’ll just state it straight up—is dangerous,” said Michael Myers, the managing director of the Rockefeller Foundation.

The “denial of science” of course is a nuanced phenomenon, and not one that is as simple as flatly denying science as a concept. People who don’t believe in climate change, or evolution, or who mistrust vaccines all come to those conclusions for different reasons. A lot of it has to do with tribalism—you believe what the people in your group believe, because membership in that group is more important to you than the truth.

“What I think is part of the challenge here is that people’s hardening belief systems are going against the science,” Myers said Saturday at the Aspen Ideas Festival, which is co-hosted by the Aspen Institute and The Atlantic. And that’s true—one of the biggest reasons that it’s so hard for facts to change people’s minds is that people have an incentive to keep believing what they already believe, as I’ve written before, especially if it’s a belief that’s deeply tied to their identity. The mental gymnastics they do to achieve this are known in psychology as “motivated reasoning.” It’s something that’s extremely hard to get around. If people change their minds on these things, it happens slowly, and it often has to be something they want to change their mind about.

Montira Pongsiri, a planetary health science policy adviser at Cornell University suggested that when scientific findings are applied in ways that fix problems in people’s lives, they might be more easily accepted.

“I think it’s the process of science that people don’t necessarily trust,” she said. “It takes a long time.” People who are facing crucial problems now don’t necessarily want to wait for peer review to get an answer, and it can be frustrating when studies contradict each other, or the best answer science has on a question is “We don’t know.”

Myers added that one way to convince people of the truth and utility of scientific findings is to “bring it down to a personal level.” Like the extreme heat that was grounding planes in Phoenix this week, for example, he said. “That just reinforces that something different is happening to the planet. It’s those kinds of direct connections, bringing it into the everyday lives of people—that’s what I think we’re going to have to deal with as we try to rebuild people’s trust in science.”